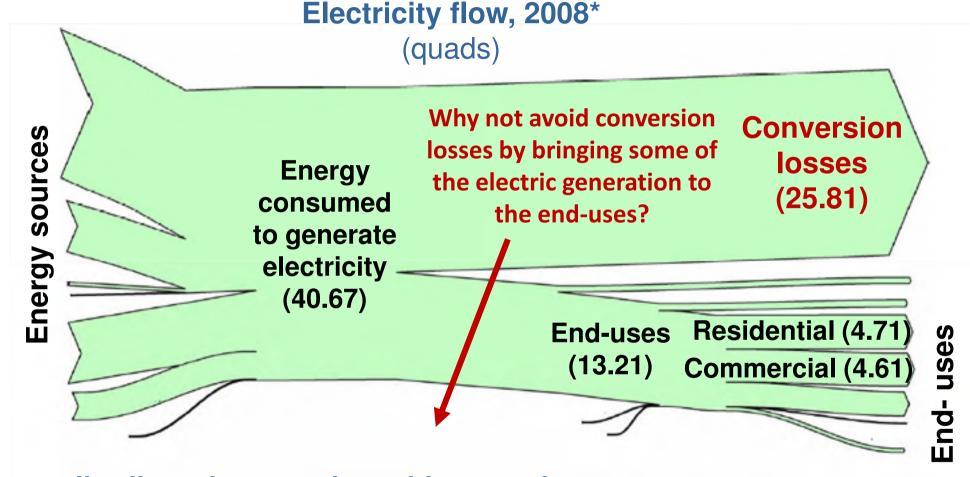


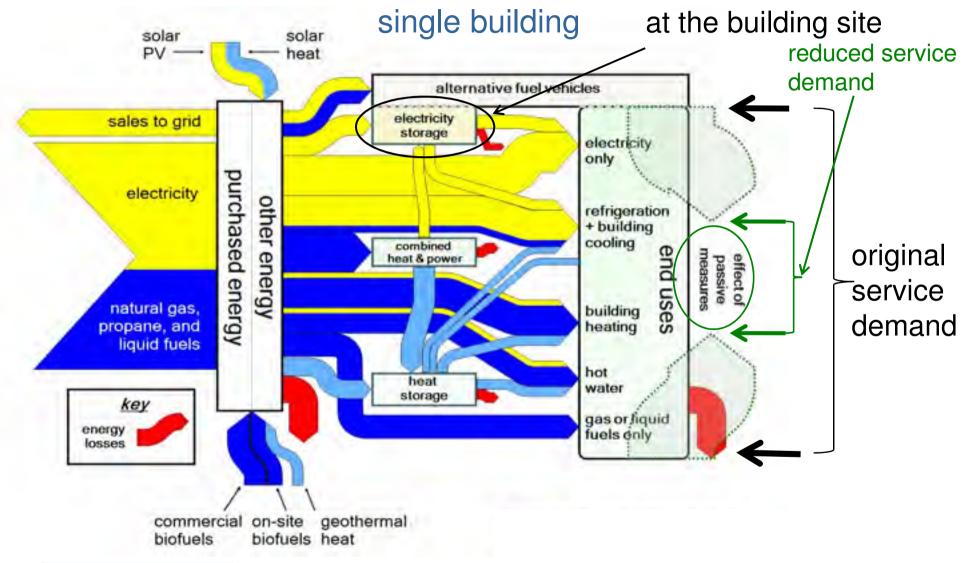
Optimal Building Technology Selection and Operation: A Systemic Approach

Michael Stadler, PhD
Technology Evaluation, Modeling, & Assessment Group
Environmental Energy Technologies Division
July 14, 2009
MStadler@lbl.gov

Outline


- Introduction: conversion losses in the electrical system
- Systemic analysis of building energy systems
 - Integrated approach, investment decisions, optimal operation of equipment
- Deterministic optimization of microgrids; the Distributed Energy Resources - Customer Adoption Model (DER-CAM),
 - Modeling
 - Example analysis on a single building; GHG abatement potential
- How to deal with uncertainty? The Stochastic Energy Deployment System (SEDS) project
- Conclusions

Introduction


distributed generation with waste heat utilization was the starting point 7 years ago

Global concept now

The Distributed Energy Resources Customer Adoption Model (DER-CAM)

DER-CAM model

- is a deterministic Mixed Integer Linear Program (MILP), written in the General Algebraic Modeling System (GAMS®)
- minimizes annual energy costs, CO₂ emissions, or multiple objectives of providing services on the building level (typically buildings with 250-2000 kW peak)
- produces technology neutral pure optimal results with highly variable runtime
- has been designed for more than 7 years by Berkeley Lab and academic collaborations in the US, Germany, Spain, Belgium, Japan, and Australia → exchange visitors
- might be ready for commercialization

GAMS

- is a high-level modeling system for mathematical programming and optimization
- consists of a command language and a set of integrated solvers, e.g. LP, MILP, and also NLP
- is entirely text based, easy to learn and use
- is cheap for academic users (~1 900\$), but more expensive for commercial users (~11 200\$) – might be a problem for DER-CAM commercialization plans

Optimization

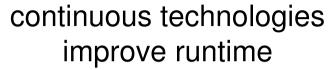
General optimization problem

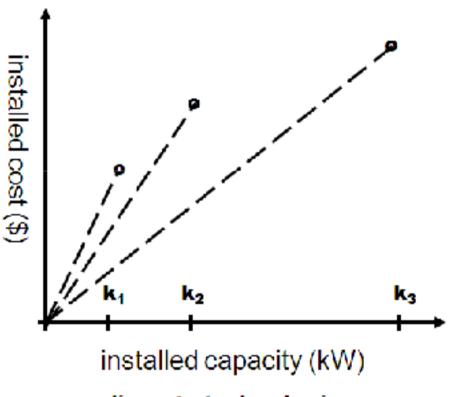
minimize
$$f(\mathbf{x})$$
 subject to $g_i(\mathbf{x}) = 0$, $i = 1, ..., m$.

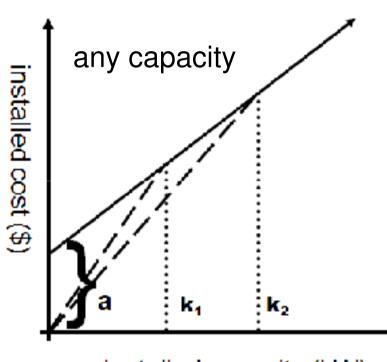
• DER-CAM is an engineering-economics optimization tool for decision support → kept stepwise linear to simplify problem and optimization

minimize
$$f(\mathbf{x}) = \sum_{k=1}^{n} c_k \cdot x_k$$
 subject to $\sum_{k=1}^{n} a_{ik} \cdot x_k = 0$

• MILP problem: some decision variables have only integer solutions, e.g. the number of installed fuel cells

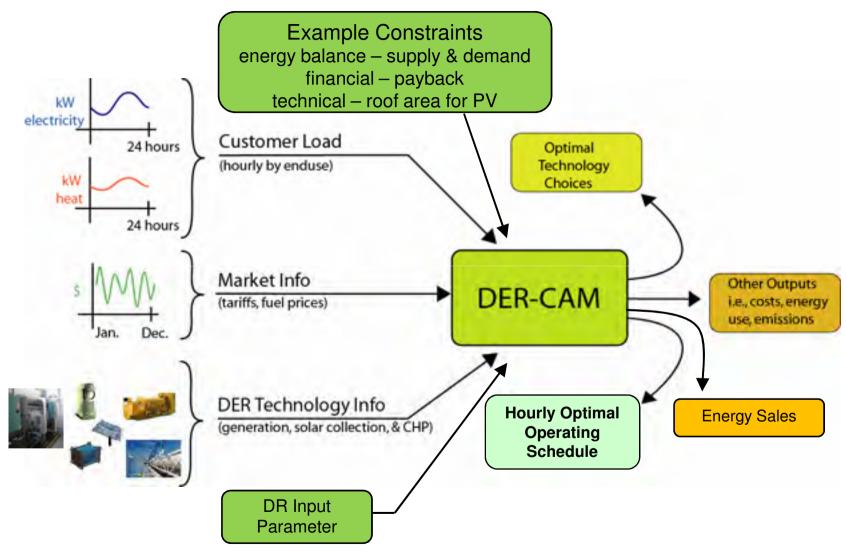



Discrete versus continuous



captures economies of scale better

installed capacity (kW)


continuous technologies, e.g. batteries

High-level schematic

Multi-criteria objective function

Multi-criteria objective function to capture different strategies of building as cost minimization, CO₂ minimization, or combinations

$$\min \left\{ w \frac{Cost}{MaxCost} + (1 - w) \frac{Carbon}{MaxCarbon} \right\} \qquad 0 \le w \le 1$$

w... weight factor

Cost(\$/a) and Carbon(t/a) are objectives

MaxCost (\$/a), MaxCarbon (t/a) are parameters to make objective function dimension—less

Entire cost objective function

$$\begin{aligned} & \min \ \ Cost = \sum_{n \in \mathbb{N}} \mathsf{ContractDemandCharge} \ & \max_{n \in \mathbb{N}} \sum_{k \in I} \mathsf{Load}_{v, m, t, h} + \mathsf{Load}_{v, m, t, h} + \mathsf{Load}_{v, m, t, h} \right\} \ + \sum_{n \in \mathbb{N}} \mathsf{MonthlyFecElectric} \\ & + \sum_{n \in \mathbb{N}} \mathsf{Load}_{v, h} \mathsf{Load}_{v, m, t, h} + \mathsf{Load}_{v, m, t, h} \right\} \ + \sum_{n \in \mathbb{N}} \mathsf{Load}_{v, m, t, h} \mathsf{Load}_{v, m, t, h} + \mathsf{Load}_{v$$

Example analyses

- Zero-Net-Energy (ZNE) Commercial Building Initiative (CBI) to make ZNE buildings marketable by 2025
- Use of energy efficient technologies and on-site (renewable) energy generation
- Our definition of the ZNEB constraint with in DER-CAM (Net Zero Source Energy)

Electricity Purchased – Electricity Exported

MacrogridEfficiency

+ Natural Gas Consumed = 0; on an annual energy basis

Questions

- How can zero net energy buildings (ZNEB) or zero carbon buildings (ZCB) be accomplished with available technology options?
- Can ZNEB be accomplished by photovoltaic and solar thermal only (Torcellini and Crawley), or would CHP be a wise choice?
- Do electric storage systems support PV penetration?
- What are the costs for reaching ZNEB / ZCB?

CA nursing home, cost minimization

(w = 1)

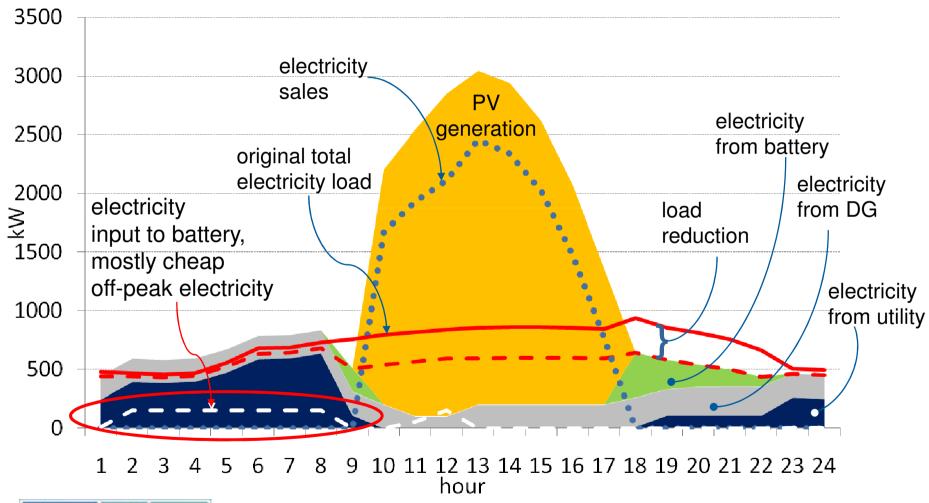
no subsidies—	run 1	run 2	run 3	run 4
marginal CO ₂ emission rate utility: 513 g/kWh	do-nothing	invest in all technologies	ZNEB invest in all techn	ZNEB low storage and low PV price
equi	pment			

CHP techn. plays a role

can reach ZNEB at a cost increase of approx. 85%

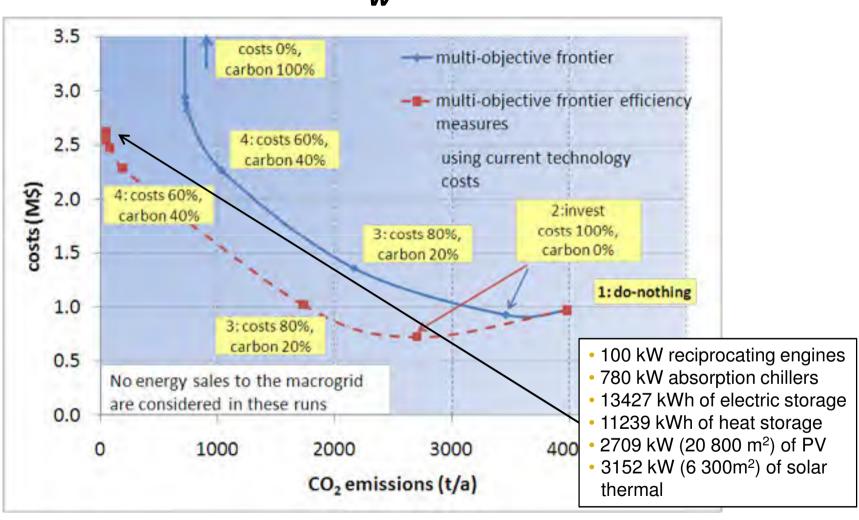
				_								
equipment												
100 kW reciprocating engine with heat				<i>V</i>								
exchanger (kW)		300	0	(200)								
abs. chiller (kW electricity displaced)	ı	0	238	\int_{0}^{∞}								
solar thermal collector (kW)	n/a	0	3952	0								
PV (kW)		0	2408	3162								
electric storage (kWh)		0	0	1514								
thermal storage (kWh)		0	9897	0								
annual costs (k\$) ar	nd percentage savings											
total (includes annualized costs of equipment)	963.9	721.3	1782.6	K 829.3								
savings compared to do-nothing (%)	n/a	(25.2)	(-84.9)	14.0								
annual utility energ	y consumption (GWh)											
electricity	5.8	2.1	3.4	2.3								
NG	5.7	8.9	0.004	7.5								
energy sa	ales (GW	(h)										
electricity	n/a	n/a	3.4	4.9								
annual CO ₂ emissions (t/a), does not	t contain	CO2 offset of	due to elec	tr. sales								
emissions	3989	2704	1752	2548								
savings compared to do-nothing (%)	n/a	(32.2	56.1	36.1								

utilizing a subsidy
for PV and storage
of M\$13→ CO₂
emission reduction
cost of \$259/tCO₂
compared to a
\$18/tCO₂ market
price


CA nursing home, cost minimization

(w=1)

ZNEB run 4, diurnal electricity pattern on a July weekday



Multi-criteria objective function

0 **★** 1

(no ZNEB)

CA nursing home results

- Cost minimization: PV is not used for battery charging and both are in competition
- CO₂ minimization: PV is used for battery charging
- CO₂ minimization results in unsustainable high energy costs for the site → consideration of sophisticated efficiency measures within DER-CAM and in reality necessary
- Waste heat utilization plays a role in ZNEB

CA CHP GHG abatement

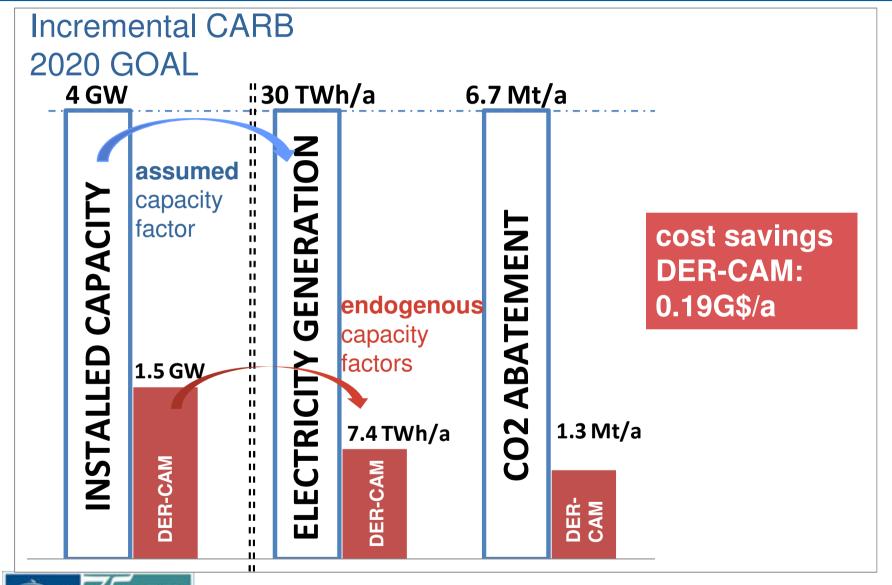
- Objective: to estimate the 2020 CO₂ abatement potential of CHP in medium-sized CA commercial buildings with electric peak loads between 100 kW and 5 MW
- ◆ Technical limitation: pick a sample of representative buildings from the California End-Use Survey (CEUS) and build a database to keep total runtime < 12 hours; automation of runs</p>
- Use DER-CAM to examine CHP attractiveness in CA commercial buildings and its competition with technologies such as PV and solar thermal
- Estimate and report CO₂ results relative to California Air Resource Board (CARB) goal of 4MW incremental CHP in 2020 for the *entire* commercial sector

35% of commercial electric demand

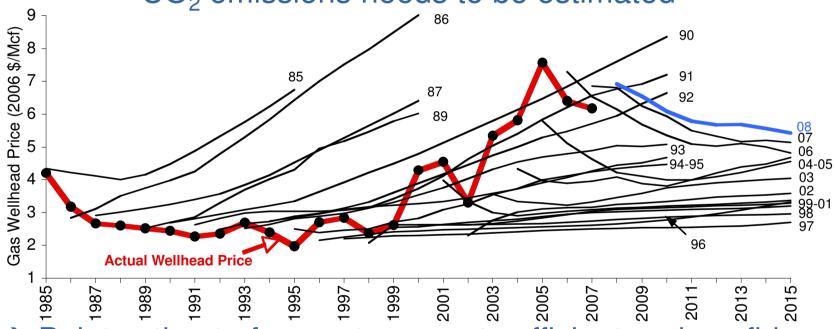
All buildings with electric peak within range of 100 kW – 5 MW

	9m	all Off	ice	Large Office			Restaurant			Retail Store			Lood/Liquor			Un. Warehouse		
TOTAL		1		25			1			0			9			7		
Zone	y,	M	L	s	М	٦	M	М	L	5	М	L	s	M	L	S	M	L
FCZ 01				4	乜							☆			*			
FCZ 03				4	4	ţt.						育			食			Ŕ
FCZ 04			Ż	ķ	¥	Ŷ۲			¥			立			Ż			*
FCZ 05				4	₩	Ŷ۲						立			×			Ż
FCZ 07				ķ	¥	Ŷ۲						立			Ż			
FCZ 08				ģ	4	Ý.						亦			*			*
FCZ 09				☆	ἀ							*			*			*
FCZ 10				☆	ἀ	×						*			*			*
FCZ 13				\$	☆	*						☆			*			*

optimizations take up to 10 hours

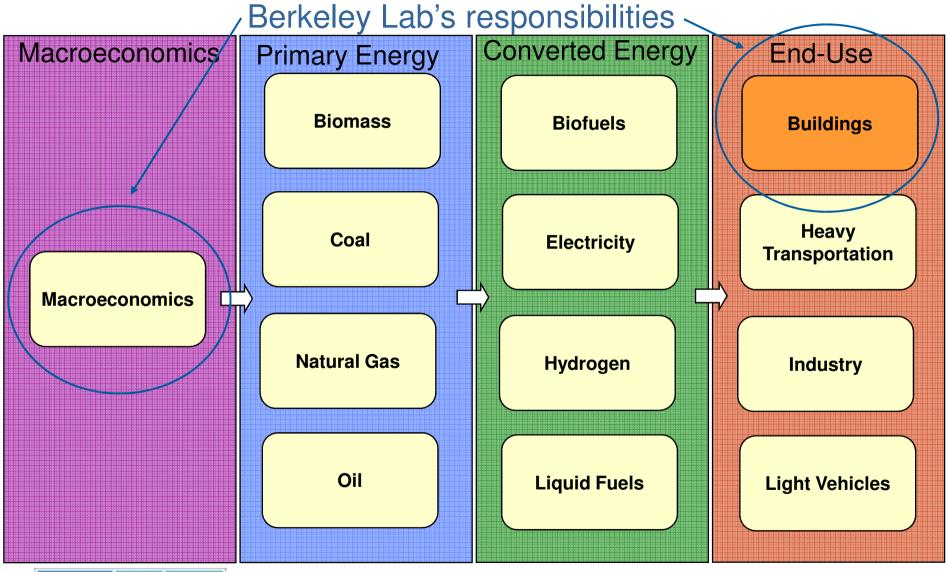

		Schoo	I	(Colleg	e	Ho	alth C	are		Hotel		Misc Rel. \				Wareh	iouse	
TOTAL		18			18			17			16			0			17		
Zone	S	M	L	S	M	L	8	M	L	S	M	L	S	M	L	S	M	L	TOTAL
FCZ 01		*	*		*	*		*	*			*	l			l	*		12
FCZ 03		*	*		☆	*		*	*		*	*	l			l	*	*	16
FCZ 04		*	*		☆	*		益	故		*	益	l			l	故	*	18
FCZ 05		*	*		tt	*			☆		*	☆	l			l	tt	*	15
FCZ 07		*	*		tt	*		弁	☆			☆	l			l	tt	*	14
1 CZ 08		*	*		4	*		*	*		*	☆					4	*	16
TCZ 09		*	*		†	*		*	*		*	☆					¥	*	15
FCZ 10		*	*		t	*		*	†		*	☆					#	*	16
FCZ 13		*	☆		t	¢		☆	☆		¢	☆					t	*	16
																	10	IAL	138

Results summary

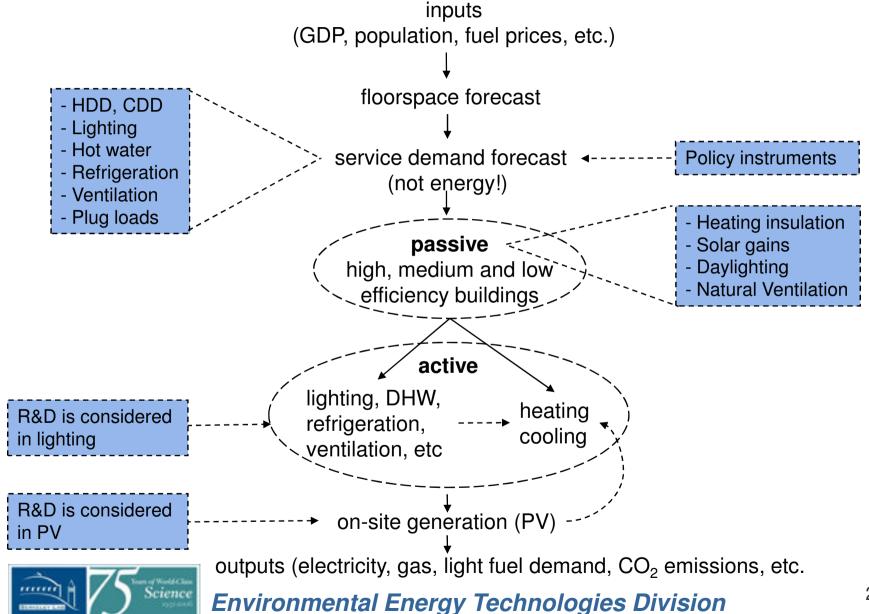

The Stochastic Lite Building Module (SLBM) of SEDS

The importance of uncertainty

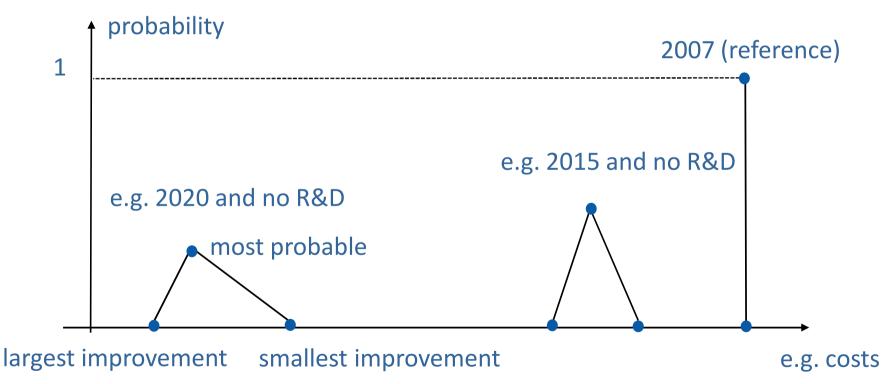
Government Performance Result Act of 1993 (GPRA) requires USDOE to predict and track the results of their programs — Impact of policies and R&D on market penetration as well as CO₂ emissions needs to be estimated


→ Point estimate forecasts are not sufficient and confidence in the estimates can beneficially be expanded to probability distributions

SEDS

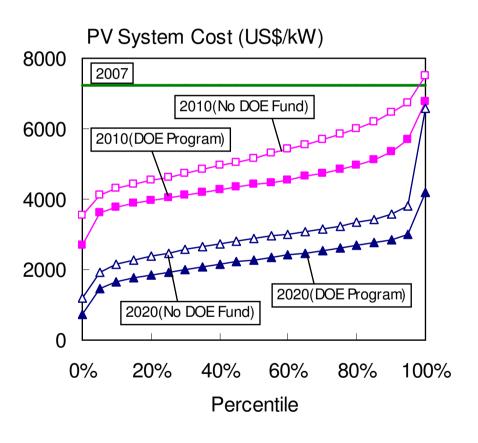


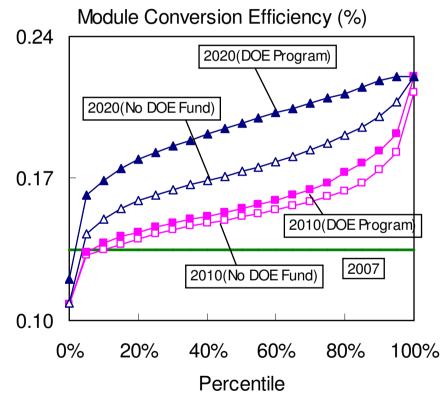
SLBM logic flow



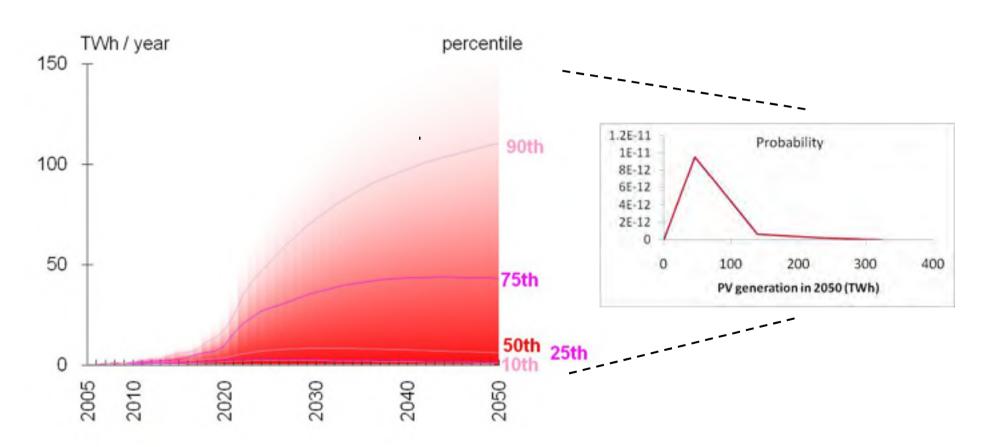
How to deal with uncertainty?

- Experts for PV, lighting and windows were asked to estimate the triangular distributions for technology parameters in 2010, 2015, and 2020
- Estimates are for different levels of USDOE R&D




Cumulative distributions

PV in commercial sector, e.g. PV system costs and efficiency


Example results

Commercial PV generation, no USDOE R&D

possible range of outcome? → probability

Conclusions

- SEDS simulations allow us to assess the risk involved in technology penetration up to 2050
- SEDS can provide us with a portfolio of technologies with different risk levels, e.g. LED is less risky in any SEDS simulation than PV
- DER-CAM can be used for policy analyses and single building optimization for a deterministic test year and delivers very detailed answers as
 - PV is mostly not used for battery charging if cost minimization is considered
 - PV is used for battery charging if CO₂ minimization is considered

Conclusions

- Waste heat utilization plays a role in ZNEB
- 1.5 GW incremental CHP capacity in medium sized CA buildings can be achieved
- Incorporation of uncertainty capabilities from SEDS to DER-CAM, stochastic optimization considering uncertainty in energy prices, tariffs, etc.

Thank you!

Questions and comments are very welcome.